
Waterpomp

Filtermateriaal om zichtbaar vuil uit het water te halen
borstels
matten
zeef
kaldnes
biochips
Bacteriën uit een flesje
Onder de waterflow wordt verstaan de circulatie(snelheid) van het water. In de meeste gevallen zorgt een pomp voor de circulatie. Water wordt rond gepompt door het filter om op die manier een goede waterkwaliteit te krijgen.
Het water in onze vijvers ‘moet’ door een filter worden gepompt. Hierin worden dan alle giftige afvalstoffen uit het water gehaald. Het uiteindelijke doel is dat het water kwalitatief goed is. Dit wordt bereikt door een samenloop van verschillende factoren. Hoe is de werking van het filter? hoeveel water stroomt er door de filter? Hoeveel vissen zitten er in de vijver? En hoeveel voert wordt gegeven.
Het is onmogelijk om te zeggen dat als al het water vijverwater een keer per x uur door het filter is geweest, de circulatieflow van de vijver goed is. Wel kan je stellen dat als de waterkwaliteit goed is, de circulatieflow waarschijnlijk voldoende is.
Doorgaans is het wel van toepassing dat een hogere flow beter is. Het water wordt schoner als het vaker kort door het filter gaat dan soms langzaam door het filter stroomt.
Daarnaast is de kans kleiner voor dode hoeken in de vijver (daar waar het water stil staat) bij een hogere flow. Ook zal de bodem schoner worden gezogen bij een hogere flow.
De wet van Bernoulli is een natuurkundige wet die het stromingsgedrag van vloeistoffen en gassen beschrijft en de drukveranderingen aan hoogte- en snelheidsveranderingen relateert. Hiermee is het mogelijk om uit te rekenen hoeveel weerstand water ondervindt bij de stroming door de buizen. Dus hoeveel moeite het de pomp kost om ons water rond te pompen.
Wij gaan in dit artikel niet verder in op de formules enzo die hierbij komen kijken. Dit hebben wij uitgezocht en verwerkt in ons invulformulier onderaan deze pagina.
De pomp heeft een bepaalde kracht om water rond te pompen. Bijvoorbeeld 100 liter per minuut. Dat wil echter niet zeggen dat er uit de pomp ook elke minuut 100 liter water komt. Deze capaciteit zal wel uit de pomp komen als je deze in het water hangt zonder buizen er aan.
Echter het kost de pomp een bepaalde kracht om water omhoog te brengen. Water ondervind weerstand als het door de buizen moet worden “geduwd”. Een knikbocht geeft bijvoorbeeld meer weerstand dan een getrokken bocht.
In onderstaand formulier kunt u ingeven welke materialen zijn/worden gebruikt bij het buizen systeem van uw vijver.
Als eerste moeten we uitrekenen hoeveel water er per seconde door de buizen gaat. Hiervoor gebruiken we het onderstaande formulier. Vul hierbij als eerste in hoeveel water uiteindelijk rond moet worden gepompt en welke diameter pijp wordt gebruikt.
Hier komt een bepaalde snelheid van het water uit. Als de snelheid hoger wordt dan 1,5 meter per seconde is het raadzaam de samenstelling aan te passen gezien dit teveel weerstand geeft / het teveel energie kost water op deze manier rond te pompen.
Daarna wordt opgeven wat de samenstelling is van het buizenstelsel. Hoeveel meter rechte pijp is gebruikt, hoeveel bochten enz. Als dit allemaal is ingegeven dan komt daar een totaal drukverlies in cm opvoerhoogte uit.
Al voorbeeld zouden we graag 16 m3 per uur rond willen pompen. Pomp B lijkt daar geschikt voor. Echter hebben we in het voorbeeld te maken met een buisdiameter van 75, 5 meter pijp, 3 90° knikken, een kogelkraan en een schuifkraan. Tot slot een UVlamp. Uit de berekening komt een verlies van 108 cm.
Kijken we dan opnieuw in de grafiek, dan zien we dat bij een opvoerhoogte van 1 meter pomp B “nog maar” 14m3 kan verpompen. Pomp C zal in dat geval beter zijn.
Een luchtpomp is onmisbaar in een vijver. Deze kan er voor zorgen dat de stroming in het water komt of wordt gebruikt voor het op peil houden van het zuurstof gehalte.
Op deze pagina bespreken we de volgende onderdelen:
Een Koi haalt niet op dezelfde manier als mensen adem. Maar een koi heeft natuurlijk wel zuurstof nodig. Hiervoor laat hij water langs de kieuwen stromen. De kieuwen zorgen ervoor dat bepaalde stoffen in het water opgenomen worden door de vis. Maar ook dat afvalstoffen worden afgegeven aan het water.
Dit werkt op een manier die ervoor zorgt dat er evenwicht is. Evenveel zuurstof in het bloed van de vis als in het water en evenveel ammoniak ik het water als in de vis.
De vis zet zuurstof om in ammoniak. Zolang wij er voor zorgen dat er voldoende zuurstof in het water is, kan de uitwisseling plaats vinden en de vis dus “ademen”.
Zolang ons filter er voor zorgt dat er (bijna) geen ammoniak in het water is, kan de vis zijn afval kwijt.
Wij moeten er dus voor zorgen dat er voldoende zuurstof in het water is. De meest gebruikte manier is beluchten met een luchtpomp.
Zuurstof opname in/door het water gebeurt aan de rand van het water met de lucht. Hoe meer rand er is, hoe meer uitwisseling zal plaatsvinden. Kleine luchtbellen en een bewegend oppervlakte is dus effectiever.
Er zijn veel verschillende luchtpompen op de markt. Onze ervaring is dat je goed moet kijken waarvoor je de luchtpomp gaat gebruiken. Immers een luchtpomp voor het beluchten van een filter heeft andere eisen dan die voor een airlift. Een snelle zoektocht op Google naar “luchtpompen voor vijver” geeft 143.000 resultaten. Als je daar geen keuze uit kan maken….
Maar waar moet je dan op letten?
Belangrijk is natuurlijk dat de gekozen pomp in je budget past. Maar goedkoop is vaak ook duurkoop. Waar je bij prijs op moet letten zijn eigenlijk 3 punten:
Aanschafprijs: Wat kost je gewenste pomp in verschillende winkels. Wil je hem bij je eigen dealer kopen of volstaat elke winkel van internet?
Energieverbruik: hoeveel energie verbruikt de gekozen pomp?
Kosten revisieset: Elke 2 jaar moet het membraan worden vervangen. De prijs van een revisieset loopt per merk nogal uit een. Dan mag de pomp wel langer mee gaan, maar al betaal je elke keer 50,- extra wordt het toch nog een dure grap.
Als je een luchtsteen aan sluit op je luchtpomp en je laat die in de vijver zakken, dan zie je op een gegeven moment dat er minder / geen lucht meer uit komt. Dit komt door de kracht van de pomp. Hoe dieper de luchtuitlaat, hoe meer kracht (druk) het kost om te werken.
Zoek je een luchtpomp voor een airlift, dan is de diepte dus 1,7 meter. Maar daar hoeft verhoudingsgewijs maar weinig lucht naar toe.
Je filter is veel minder diep en hoeft daarom ook minder druk te leveren. Echter, als je in het filter met 10 luchtballen wilt werken, moet je pomp wel 50l/m lucht kunnen leveren.
Een luchtbel die onder water vrij komt gaat omhoog. Onderweg naar boven wordt het water aan de kant geduwd en ontstaat een opwaartse stroming. Dit is het principe van de airlift.
Onderin een buis wordt lucht geblazen en in de weg naar boven neemt die lucht veel water mee.
“Vroeger” gebruikte waterpompen nog veel energie en konden ze aan en uit. Tegenwoordig zijn deze veel beter te regelen en ook veel zuiniger geworden. Een airlift kan bergen water verzetten met een 20L luchtpomp. Daarmee was de airlift een geweldige ontdekking waar veel mee kon worden bespaard.
De uitvoer van een gravity gevoed filter stroomt in een dikke buis. Deze buis noemen we de collector. Hierin wordt het water verzameld wat door de airlift retour vijver moet.
In deze collector staat een buis (stijgbuis) die is aangesloten op de vijver. Onderin deze buis wordt lucht gepompt, waardoor het water uit de collector naar boven stroomt. De stijgbuis is aangesloten op de vijver en zo stroomt het water uit de collector de vijver in.
Met veel experimenteren is gebleken dat de stijdbuis een lengte van 1,7 meter het meeste rendement geeft. Dit is de afstand tussen het wateroppervlak (van de vijver) en de luchtkamer van de airlift.
De retour in de vijver moet zo’n 5 tot 10 cm onder water zitten.
Tussen de stijgbuis en de vijver horen nog 2 Tstukken te zitten die open zijn aan de bovenkant. Hier komt al het lucht uit wat onderin de airlift is gepompt. In het eerste Tstuk zal ook veel schuim komen. Een van de prettige bijwerkingen van een airlift is het feit dat deze ook werkt als eiwit afschuimer.
De airlift wordt ook wel eens een Belgische uitvinding genoemd. De Koivrienden.be hebben dan ook onwijs veel ervaring opgedaan met het bouwen van de airlift. Op youtube staan 2 duidelijke instructie video’s over het bouwen van de airlift.
Bekijk deel 1 van de airlift film van koivrienden.be op youtube |
||
Bekijk deel 2 van de airlift film van koivrienden.be op youtube |
Zuurstof wordt door het water opgenomen aan de rand van de luchtbel. Hierdoor is het beter veel kleine luchtbellentjes te maken dan een grote. Dat is nu precies de functie van de luchtsteen. Doordat de lucht via de luchtsteen gaat krijgt het zuurstof beter de kans om zich met het water te vermengen.
Het belang van de juiste luchtstenen wordt wel eens onderschat. Uiteindelijk bepaalt niet de luchtpomp de zuurstofafgifte aan het water maar hoeveel oppervlak lucht in aanraking komt met water.
Bij de aanschaf van luchstenen wordt de informatie verstrekt hoeveel lucht er door dat type steen kan per minuut. Zorg ervoor dat je capaciteit minimaal overeen komt met de afgifte van je pomp. Anders kan de pomp zijn lucht niet kwijt, wat nadelig is voor de levensduur van de pomp.
Een goede luchtpomp heeft jaarlijks / om het jaar onderhoud nodig. Het membraan in de pomp maakt honderden bewegingen per minuut en gaat op den duur lekken. De pomp verliest dan zijn kracht.
Daarnaast komt het losgeraakte rubber in het systeem waardoor de pomp warm (heet) wordt.
Het vervangen van deze onderdelen is vrij simpel en bespreken wij in onderstaande tekst stap voor stap.